‘ ! ! . UCRL-CONF-214749

LAWRENCE
LIVERMORE
NATIONAL

ooy | SIMUlation of Positronium: Toward More
Realistic Models of Void Spaces in
Materials

A.L.R. Bug, T.W. Cronin, P.A. Sterne, Z.S.
Wolfson

August 22, 2005

8th International Workshop on Positron and Positronium
Chemistry (PPCS8)

Coimbra, Portugal

September 4, 2005 through September 9, 2005




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.



Simulation of Positronium:
Toward more realistic models of void spaces in
materials

Amy L.R. Bug, ®* Timothy W. Cronin,® P.A. Sterne, "
Zachary S. Wolfson ?

aDepartment of Physics and Astronomy, Swarthmore College, Swarthmore, PA,
19081, U.S.A

b Lawrence Livermore National Laboratory, P.O. Box 808, L-045, Livermore, CA
94550, U.S.A.

Abstract

An exact treatment of the positron and electron in a two-chain, Path Integral Monte
Carlo (PIMC) simulation is used to calculate both self-annihilation and pickoff rates
at finite temperature. It has already been demonstrated that this technique can
reproduce and extend results of simple theories of positrons and positronium (Ps)
in spherical voids. Here, we include the effect of the linear dielectric response of a
homogeneous material on the annihilation rate of positrons and Ps. In addition, we
find lifetimes and structural information for Ps in cylindrical channels, both with
and without adsorbed fluid atoms.
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1 Introduction

Positron annihilation lifetime spectroscopy (PALS) of positronium (Ps) has
been used extensively in gaining a knowledge of pore structure and contents
in materials as diverse as minerals, polymers, glasses, and low-k dielectrics[1-
5]. The extrapolation from lifetime to pore size in such materials is done almost
exclusively using the Tao-Eldrup (TE) model or alternatively, a rectangular,
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finite-temperature version, the RTE model [6,7]. In this paper, we will use the
term “single-particle-in-a-box” (SPIB) to denote models like these, involving
a single particle in a pore with hard walls and no dielectric response. We will
reserve the label“TE” for a SPIB in the restricted case that (i) the pore is
spherical (ii) the calculation is done for the ground state.

In this paper, we address three aspects of materials that go beyond these
SPIB models. First, we consider the effects of dielectric response on a more
realistic two-particle model of Ps[8]. We find that dielectric effects create better
agreement with TE than one would otherwise expect. Second, we demonstrate
a scaling relation between the radius of a cylinder and of a sphere in the TE
approximation. Third, we explicitly model Ps and fluid particles in a pore. We
confirm that the Ps creates a bubble at higher fluid densities and we find the
pickoff rate with both the fluid and pore wall.

2 Methods and Models
2.1 Theory and general method

We model the annihilation rate I' (inverse lifetime) in fluid-filled pores as the
self-annihilation rate xI'y and pick-off annihilation rates from fluid and pore
walls, I'y o wan and I'p o auia, operating in parallel [9]. Thus,

’7'_1 = P — HFO + Fp.o.wall + Fp‘o.ﬂuid (]'>

The self-annihilation rate for ortho-Ps in vacuum is I'y, & is the internal contact
density, and

I_\p.o.wall = (271571) / n+(r)d3r, (2>
r=R.—A

with n(r) the positron density at location r in a pore of radius R, and A
a shell thickness in which electronic density is assumed to be nonzero. In the
current paper, we consider both vacant and fluid-filled pores. In the former
case, I'p o.auia = 0. In the latter,

Dpomia = e [ n-(n. (03[ ()dr 3)

The electronic density from the fluid, n_(r), can be found by superposing
atomic charge densities given by a local Density Functional Theory (LDA-



DFT)[10]. Here, the enhancement factor [11] v will be set to unity (the “in-
dependent particle model”).

In order to calculate the positronic density, n,, and internal contact density,
k,in Egs. 1, 2 and 3, we employ Path Integral Monte Carlo. PIMC is a method
which allows one to calculate < d(r) >, the probability that the positron will
occupy the position r. More generally, it allows one to calculate the thermal
average of observables[12,13]. PIMC methods have been used by a number of
groups to study particles like electrons and positrons in fluids and microp-
orous solids [8,14,15] . In this type of calculation, the light particles (in our
case, et and e”) may be represented as polymeric chains of entities known as
“beads”[16]. The two chains of beads interact through the Coulomb interac-
tion, which we treat using a numerical interpolation of the exact Coulombic
propagator|[17].

Our calculations also require terms in p of the form ea:p(—ﬁV) to describe
the sum total potential energy operator, V, acting on et and e~ within the
material. For the contribution from the pore walls, we use an effective poten-
tial, logC;Y (B). Gis a propagator which obeys the Bloch equation and enforces
the correct, hard-wall, boundary condition. For both spherical (Section 3) and
cylindrical (Sections 4 and 5) pore geometries, we use a form for G(3) which is
an approximation to the exact propagator for a planar wall[18]. (The plane in
question is the tangent to the enclosing surface at a point closest to a bead.)
For calculations of Ps in the presence of argon, we use pair potentials. The
et-Ar potential is a single-atom Hartree potential obtained from LDA-DFT.
The e™-Ar potential is fit to scattering data[19]. Correlation from atomic po-
larization is not included. Both of these potentials are wholly repulsive.

2.2  Dielectric model

The region beyond a spherical pore wall is modeled as a uniform dielectric
material with dielectric constant k,, greater than the dielectric constant k; = 1
within the pore. The electric potential inside the sphere can be obtained by
solving Laplace’s equation with the appropriate boundary conditions|21,22].
The potential in Gaussian units due to a point charge ¢; at location r; within
the sphere is:

. qj ‘ .
o) = 2+ 0i0)
ks — k& | "
o) = Bty (R) P (cost)), (4)



where 0; is the angle between r; and r. The total potential in the cavity due
to two charges is found by superposition. The e™ and e~, beads interact at the
same imaginary time slice only. The cavity polarization part of the potential
energy for beads at r; and rs is:

V{11, 12) = 21 (61(11) + Ga(r0)) + 302(61(52) + 63(r2)) 9

with ¢; defined as in Eq. 4. Of the four terms in Eq. 5, two represent the “self-
energy” of the charges due to their own induced polarization, while the other
two are the “cross-energy”.

For self-energy, we calculate the first m terms of Eq. 4 explicitly, then make the

approximation that n 4+ 1 ~ n for n > m and apply the geometric correction
m—+1

(o9}
term Z bt = - with b = % For m = 25, the error is negligible. We
cut ofTFI tnﬁe series in Legendre polynomials for the cross-energy at a sufficient
number of terms to permit 2% accuracy within a distance of @ = 0.1 au of
the pore wall, but we employ no correction term. As expected, polarization
energies diverge as Ri” as r; — R.; this Coulombic singularity renders our
path integral algorithm unstable. We eliminate the instability in a standard

way by introducing a Yukawa screening potential [20] which multiplies V},,; of
Eq. 5 by the factor (1 — e’(Rca_”)), with a = 0.132 au.

2.8  Fluid model

We simulate the behavior of Ar in a cylindrical pore via classical Metropo-
lis Monte Carlo methods. After introducing Ar atoms in a regular packing
scheme, we move them randomly, accepting trial moves with a probability
corresponding to the thermal density matrix exp(—/5V}), with V} the config-
urational potential energy. We employ a Lennard-Jones potential Up;(r) to
model interactions between two Ar atoms:

ULs(r) = 4¢e[(o/r)"* = (o/r)"] (6)

We use € = 119.8 K, and ¢ = 3.405 A. To simulate an infinite cylinder, we
implement periodic boundary conditions in the axial direction with a repeat
length of five times the radius. Potentials are cut off at either half the cylinder
height or 2.5 o, whichever is less. The fluid atoms are displaced every 20
moves of e, e~ beads. In simulations, we generally allow ~ 10 Monte Carlo
steps per Ar atom for equilibration before data collection. We aim for a 50%
acceptance fraction using adaptive step sizes.



3 Spherical pores in a dielectric material

The dielectric polarizability of material outside the void has the effect of at-
tracting the positron to the internal surface. The effect is particularly dramatic
if the pore encloses a single e*, rather than Ps. The main part of Fig. 1 depicts
Tpowall = 1/Tpowan (Eq. 2) for a single e™. When k, = 1.0 (the TE case) this
lifetime rises as the volume, or R?. Lifetime also increases for k, = 3 but does
not scale as the volume. To find the limiting value of 7, e as R. — 00, we
can solve the Schrodinger equation for a positron outside of a flat, dielectric
surface. If temperature is kept arbitrarily low so the positron remains in its
ground state, 7,..war — 11.12 ns.

The inset to Fig. 1 shows Ps pickoff lifetime data for two values of cavity
radius, R, = 10 and 20. The lifetime of caged Ps exceeds that of a single
e, as we would expect from previous studies[8,23]. Interestingly, 7, o.wan 18
similar for Ps in a k, = 3 solid and for the TE model. For R, = 20 au, Tp.o.wau
is 21, 25 ns for k, = 1, 3. While modeling Ps in a hard pore as a two-particle
system raises the pickoff lifetime, including the dielectric polarizability of the
solid lowers the lifetime. Modeling both of these features results in good accord
with the TE result.

Fig. 2 shows the radial probability density in a pore for the et of Ps. (Integra-
tion over the outermost A = 3.13 au of these curves produces the R. = 20 au
data of Fig. 1.) One clearly sees that the polarizable solid draws et density
toward the wall, lowering the lifetime from the k, = 1 value. There is a com-
plicated relationship between the TE and the k, = 3, two-particle results. At
about 3 au into the pore, these curves cross. At smaller radii, the e™ of Ps is
closer to the pore wall than would be calculated from the TE model; at larger
radii, the opposite is true.

Table T shows the effect of dielectric constant on the Ps pickoff lifetime for
pores of two radii. For the small micropore with R, = 6 au, the lifetime varies
little. For R. = 10 au however, 7, , wau is lowered by a factor of almost two as
the dielectric constant is increased from k, = 1 to 15. Increasing k, beyond
this range does not produce a large, additional change in the lifetime. This
might be expected from the fact that the strength of the polarization potential
from Eq. 4 scales only from 0 to 1, varying as (k, — 1)/(k, + 1).

The internal contact density, &, is recognized to exceed unity in small model
voids with hard walls[24,25]; this is one of the unphysical consequences of using
such models. Setting k, > 1 reduces x, but in small micropores the increase
in kK due to compression overwhelms its reduction due to dielectric shielding.
In larger pores such as R, = 20 au, for k, = 3 we find x = 0.96(1), a modest
reduction from x = 1.00(1) for k, = 1.



4 Annihilation in cylindrical pores

4.1 Comparison of ground-state Spherical and Cylindrical SPIB

The TE model has been used for many pores that are surely not spherical.
Here we offer a possible explanation for the success of the standard TE model
when applied to a system where pores are elongated to the point of being
modeled by cylinders. The TE formula for pickoff is given by Eq. 2 which can
be readily evaluated for ground states in both spheres and cylinders[26]. The
dotted line in Fig. 3 shows that if we rescale the spherical radius Ry by a factor
s ~ 1.195, the lifetimes are nearly identical. Agreement becomes successively
better as Ry grows. The greatest error is around 6%, at Rg =~ 5 au. The error
drops to zero at large Ry ; it is less than 1.5% for Ry > 1 nm. The rescaling
factor aes can be shown analytically to be (7/x)??, where, y = 2.4048 is the
first node of the Bessel function Jo(x), by equating the lowest order terms in
a series expansion of the spherical and cylindrical probability densities near
the wall[27]. The fact that the TE model predicts virtually the same lifetime
for a cylinder of radius Ry and a sphere of radius a.sRg may help explain the
robust utility of the TE model.

4.2 Beyond SPIB

When PIMC is used to simulate Ps at an arbitrary temperature in a cylindrical
pore, a number of features emerge. The lifetime in a cylindrical pore is longer
than in a spherical pore of the same radius, in agreement with SPIB results
[29,30], including Section 4.1 above. The two-particle model lifetime is also
longer than that of a SPIB with m = 2m, in the same pore. (Comparing
equal masses is important - mass determines the admixture of excited states
at finite temperature[6,7,31]. ) Lifetime decreases with temperature as one
would expect as excited states enhance density near the wall. Some of these
features are illustrated in Table II: lifetime data as in Eq. 1 for a micro- and
small mesopore. The lower temperature involves only the ground state; the
higher temperature excites an admixture of up to seven (for R. = 25) states
contributing at a level of greater than 0.1%. (Similar calculations are done for
a spherical pore in Reference [28].)

In narrow pores, one can see the results of the “squeezing” of the orbitals,
resulting in k > 1. The orbital is simultaneously compressed in the radial and,
as Fig. 4 demonstrates, axial direction. This is perhaps counterintuitive. How-
ever, compression is asymmetrical and becomes more so as the pore narrows.
The mass quadrupole moment, Q =< 322 —7? >, is Q = 2,1 or 0.5 au when



the pore radius is R. = 4,6, or 8 au.

5 Annihilation in fluid-filled pores

Fig. 5 shows the pickoff rate, from Eqs. 2, 3 for Ps in an Ar-filled cylindrical
pore of radius R. = 16 au. At this temperature, T' = 632K, Ps is expected
to be in a ground state. Plausibly, I'y, fiuia, rises linearly at low p*. At higher
densities, the rate levels off. The not-too-surprising conclusion that a Ps bubble
forms at higher p* is not only apparent from an analysis of bead coordinate
data, but is also apparent from the interesting shape of I', ,au. For very
low densities, it rises slightly. One might think of Ps as being “expanded” by
isolated Ar atoms that are intercalated into Ps density. At higher densities
the bubble excludes Ar. Ps is partially shielded by surrounding fluid from
contact with the wall, so I'y , waeu falls as I'y , fiuiq continues to rise. It would be
interesting to examine the case of a very narrow pore, where the Ps “bubble”
might fill the pore cross section, and show rather different behavior.
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ko  Tpowan: Re=06au Tpowar @ Re= 10au

1 1.10(5) 4.8(2)
2 1.06(1) 4.1(2)
3 1.03(1) 3.5(2)
5 1.005(10) 3.0(2)
15 0.99(1) 2.7(1)

Table I: Pickoff lifetime in ns as a function of k, for Ps in spherical
micropore. For both radii, Ps is in cavity ground state.

R. (au) T (K) T TSPIB

8 6320 3.27(1) 2.29
8 1000 3.82(5) 257
25 1000 53(1) 387
25 300 72(10)  45.0

Table II: Lifetime (pickoff plus self-annihilation) in ns for Ps in cylindrical
micro- and mesopores at temperature T'. Pickoff occurs within A = 3.13 au
of wall. Lifetime 7 from two-particle PIMC calculation. SPIB lifetime, 7gp;p
found by summing series of Bessel functions with appropriate thermal
weights, assuming a single particle of mass 2m, at temperature 7.
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Fig. 1. Pickoff lifetime as a function of spherical pore radius, R.. Main part of figure
shows lifetime of e™. Open circles: k, = 1; filled circles: ko = 3. Inset of figure
includes square symbols showing lifetime of Ps. Open square with plus-sign: &, = 1;
filled square: k, = 3. All data for Ps in cavity ground state.
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Fig. 2. The radial probability density for Ps in the ground state of a spherical pore
of radius R. = 20 au. Open circles: k, = 1.0; filled circles: k, = 3.0; dashed line: TE
result. The main figure provides a close-up view of density in the outer 5 au of the
pore. The inset shows the density for all radii within the pore.
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Fig. 3. SPIB lifetimes as a function of cavity radius, Ry. Thick dashed line is spherical

(TE) geometry result; thin solid line is cylindrical geometry result; dotted line is
spherical (TE) geometry result with cavity radius rescaled by factor as.
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Fig. 4. Distribution function in z, the component of the Ps relative coordinate along
the cylinder axis. Temperature 7' = 1000K implies Ps is in ground state in cavity.
Small filled circles: R. = 4 au; Large filled circles: R. = 6 au; Large open circles:
R. = 8 au. Solid line: R, = oo (free Ps) result. This is found by integrating the
free Ps ground state density |W(r)|> = 1/87 exp(—r) where r = \/p2 + 22 over p,
to obtain Pre(2) = fexp(—|z|)(1+|z]) .
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Fig. 5. The pickoff annihilation rate for Ps in a R, = 16 au cylindrical pore taken
at a temperature of 7' = 632K. Filled circles: pickoff rate with Ar atoms, Iy, fuid;
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